PRECLINICAL SPEECH SCIENCE

Anatomy, Physiology, Acoustics, and Perception

THIRD EDITION

Thomas J. Hixon Gary Weismer Jeannette D. Hoit

PRECLINICAL SPEECH SCIENCE

PRECLINICAL SPEECH SCIENCE

Anatomy, Physiology, Acoustics, and Perception

THIRD EDITION

Thomas J. Hixon Gary Weismer Jeannette D. Hoit

5521 Ruffin Road San Diego, CA 92123

e-mail: info@pluralpublishing.com website: http://www.pluralpublishing.com

Copyright © 2020 by Plural Publishing, Inc.

Typeset in 10/12 Palatino by Flanagan's Publishing Services, Inc. Printed in South Korea through Four Colour Print Group

All rights, including that of translation, reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, recording, or otherwise, including photocopying, recording, taping, Web distribution, or information storage and retrieval systems without the prior written consent of the publisher.

For permission to use material from this text, contact us by Telephone: (866) 758-7251 Fax: (888) 758-7255 e-mail: permissions@pluralpublishing.com

Every attempt has been made to contact the copyright holders for material originally printed in another source. If any have been inadvertently overlooked, the publishers will gladly make the necessary arrangements at the first opportunity.

Library of Congress Cataloging-in-Publication Data

Names: Hixon, Thomas J., 1940-2009, author. | Weismer, Gary, author. | Hoit, Jeannette D. (Jeannette Dee), 1954- author.
Title: Preclinical speech science : anatomy, physiology, acoustics, and perception / Thomas J. Hixon, Gary Weismer, Jeannette D. Hoit.
Description: Third edition. | San Diego, CA : Plural Publishing, [2020] | Includes bibliographical references and index.
Identifiers: LCCN 2018018596 | ISBN 9781635500615 (alk. paper) | ISBN 1635500613 (alk. paper)
Subjects: | MESH: Speech--physiology | Speech Perception | Speech Disorders | Respiratory System--anatomy & histology
Classification: LCC QP306 | NLM WV 501 | DDC 612.7/8--dc23
LC record available at https://lccn.loc.gov/2018018596

Contents

PREFACE ACKNOWLEDGMENTS REVIEWERS	
INTRODUCTION	1
Focus of the Book	1
Domain of Preclinical Speech Science	1
Levels of Observation	1
Subsystems of Speech Production and Swallowing	3
Applications of Data	4
Domain of Preclinical Hearing Science	4
Levels of Observation	4
Subsystems of the Auditory System	5
Applications of Data	6
Review	7
2 BREATHING AND SPEECH PRODUCTION	9
Introduction	9
Anatomy of the Breathing Apparatus	9
Skeletal Framework	9
Breathing Apparatus and Its Subdivisions	10
Pulmonary Apparatus	10
Chest Wall	12
Pulmonary Apparatus–Chest Wall Unit	12
Forces of Breathing	13
Passive Force	13
Active Force	14
Muscles of the Rib Cage Wall	14
Muscle of the Diaphragm	17
Muscles of the Abdominal Wall	17
Summary of Passive and Active Forces	20
Realization of Passive and Active Forces	22
Movements of Breathing	22
Movements of the Rib Cage Wall	22
Movements of the Diaphragm	23
Movements of the Abdominal Wall	25
Relative Movements of the Rib Cage Wall and Diaphragm–Abdominal Wall	25
Forces Underlying Movements	25 27
Control Variables of Breathing Lung Volume	27 27
Alveolar Pressure	27
	20

	Chest Wall Shape	31
	Neural Control of Breathing	34
	Control of Tidal Breathing	34
	Control of Special Acts of Breathing	36
	Peripheral Nerves of Breathing	37
	Ventilation and Gas Exchange During Tidal Breathing	38
	Breathing and Speech Production	40
	Extended Steady Utterances	40
	Running Speech Activities	44
	Variables That Influence Speech Breathing	49
	Body Position	49
	Extended Steady Utterances in the Supine Body Position	50
	Running Speech Activities in the Supine Body Position	52
	Speech Breathing in Other Body Positions	54
	Body Type	55
	Age	55
	Sex	57
	Ventilation and Drive to Breathe	57
	Cognitive-Linguistic and Social Variables	58
	Review	59
	References	60
3	LARYNGEAL FUNCTION AND SPEECH PRODUCTION	63
	Introduction	63
	Anatomy of the Laryngeal Apparatus	63
	Skeletal Framework	63
	Thyroid Cartilage	63
	Cricoid Cartilage	64
	Arytenoid Cartilages	65
	Epiglottis	66
	Hyoid Bone	66
	Laryngeal Joints	66
	Cricothyroid Joints	68
	Cricoarytenoid Joints	69
	Internal Topography	72
	Laryngeal Cavity	72
	Vocal Folds	72
	Ventricular Folds	75
	Laryngeal Ventricles	75
	Ligaments and Membranes	75
	Forces of the Laryngeal Apparatus	77
	Intrinsic Laryngeal Muscles	78
	Extrinsic Laryngeal Muscles	82
	Supplementary Laryngeal Muscles	83
	Infrahyoid Muscles	83
	Suprahyoid Muscles	85
	Summary of the Laryngeal Muscles	85
	Movements of the Laryngeal Apparatus	86
	Movements of the Vocal Folds	86
	Vocal Fold Abduction	86

vi

	Vocal Fold Adduction	87
	Vocal Fold Length Change	89
	Movements of the Ventricular Folds	89
	Movements of the Epiglottis	91
	Movements of the Laryngeal Housing	91
	Control Variables of Laryngeal Function	91
	Laryngeal Opposing Pressure	92
	Laryngeal Airway Resistance	92
	Glottal Size and Configuration	93
	Stiffness of the Vocal Folds	94
	Effective Mass of the Vocal Folds	95
	Neural Substrates of Laryngeal Control	95
	Laryngeal Functions	97
	Degree of Coupling Between the Trachea and Pharynx	97
	Protection of the Pulmonary Airways	98
	Containment of the Pulmonary Air Supply	98
	Sound Generation	98
	Laryngeal Function in Speech Production	98
	Transient Noise Production	99
	Sustained Turbulence Noise Production	99
	Sustained Voice Production	100
	Vocal Fold Vibration	101
	Fundamental Frequency	104
	Sound Pressure Level	106
	Fundamental Frequency–Sound Pressure Level Profiles	107
	Spectrum	107
	Voice Registers	108
	Running Speech Activities	111
	Fundamental Frequency	111
	Sound Pressure Level	112
	Spectrum	113
	Articulation	113
	Variables that Influence Laryngeal Function During Speech Production	113
	Age	113
	Sex	116
	Review	118
	References	119
4	VELOPHARYNGEAL-NASAL FUNCTION AND SPEECH PRODUCTION	127
	Introduction	127
	Anatomy of the Velopharyngeal-Nasal Apparatus	127
	Skeletal Framework	127
	Pharynx	130
	Velum	132
	Nasal Cavities	133
	Outer Nose	134
	Forces of the Velopharyngeal-Nasal Apparatus	135
	Muscles of the Pharynx	135
	Muscles of the Velum	139
	Muscles of the Outer Nose	142

vii

	Movements of the Velopharyngeal-Nasal Apparatus	143
	Movements of the Pharynx	143
	Movements of the Velum	144
	Movements of the Outer Nose	145
	Control Variables of Velopharyngeal-Nasal Function	145
	Velopharyngeal-Nasal Airway Resistance	145
	Velopharyngeal Sphincter Compression	146
	Velopharyngeal-Nasal Acoustic Impedance	147
	Neural Substrates of Velopharyngeal-Nasal Control	148
	Velopharyngeal-Nasal Functions	149
	Coupling Between the Oral and Nasal Cavities	149
	Coupling Between the Nasal Cavities and Atmosphere	150
	Ventilation and Velopharyngeal-Nasal Function	151
	Nasal Valve Modulation	151
	Nasal Cycling (Side-to-Side)	152
	Nasal-Oral Switching	152
	Velopharyngeal-Nasal Function and Speech Production	152
	Sustained Utterances	152
	Running Speech Activities	154
	Variables that Influence Velopharyngeal-Nasal Function	156
	Body Position	156
	Age	157
	Sex	159
	Review	160
	References	161
5	PHARYNGEAL-ORAL FUNCTION AND SPEECH PRODUCTION	165
	Introduction	165
	Anatomy of the Pharyngeal-Oral Apparatus	165
	Skeletal Framework	165
	Maxilla	165
	Mandible	166
	Temporomandibular Joints	167
	Internal Topography	170
	Pharyngeal Cavity	170
	Oral Cavity	170
	Buccal Cavity	172
	Mucous Lining	172
	Forces of the Pharyngeal-Oral Apparatus	172
	Muscles of the Pharynx	172
	Muscles of the Mandible	173
	Muscles of the Tongue	175
	Muscles of the Lips	178
	Movements of the Pharyngeal-Oral Apparatus	182
	Movements of the Pharynx	183
	Movements of the Mandible	183
	Movements of the Tongue	184
	Movements of the Lips	184
	Control Variables of Pharyngeal-Oral Function	186
	Pharyngeal-Oral Lumen Size and Configuration	186

	Pharyngeal-Oral Structural Contact Pressure	188
	Pharyngeal-Oral Airway Resistance	188
	Pharyngeal-Oral Acoustic Impedance	189
	Neural Substrates of Pharyngeal-Oral Control	190
	Pharyngeal-Oral Functions	191
	Degree of Coupling Between the Oral Cavity and Atmosphere	191
	Chewing and Swallowing	191
	Sound Generation and Filtering	191
	Speech Production: Articulatory Descriptions	192
	Vowels	192
	Place of Major Constriction	192
	Degree of Major Constriction	194
	Lip Rounding	194
	Diphthongs	194
	Consonants	194
	Manner of Production	195
	Place of Production	195
	Voicing	195
	Speech Production Stream: Articulatory Processes	195
	Coarticulation	196
	Traditional Theory of Coarticulation (Feature Spreading)	196
	Problems with the Traditional Theory of Coarticulation	200
	Articulatory Phonology or Gesture Theory	200
	Variables That Influence Pharyngeal-Oral Function	202
	Age	202
	Sex	206
	Review	207
	References	208
6	SPEECH PHYSIOLOGY MEASUREMENT AND ANALYSIS	213
	Introduction	213
	Measurement and Analysis of Breathing	213
	Spirometry	213
	Chest Wall Surface Tracking	215
	Manometry	218
	Measurement and Analysis of Laryngeal Function	219
	Endoscopy	219
	Electroglottography	222
	Aeromechanical Observations	224
	Measurement and Analysis of Velopharyngeal-Nasal Function	227
	Nasendoscopy	227
	Aeromechanical Observations	227
	Measurement and Analysis of Pharyngeal-Oral Function	230
	Structural and Functional Imaging	230
	X-Ray Imaging	230
	Magnetic Resonance Imaging	231
	Ultrasonic Imaging	232
	Articulatory Tracking	232
	X-Ray Microbeam Imaging	232
	Electromagnetic Sensing (Articulography)	234

ix

PRECLINICAL SPEECH SCIENCE: ANATOMY, PHYSIOLOGY, ACOUSTICS, AND PERCEPTION

	Optoelectronic Tracking Electropalatographic Monitoring	234 235
	Aeromechanical Observations	235
	Health Care Professionals and Clinical Measurements	235
	Review	240
	References	241 241
7	ACOUSTICS	247
	Introduction	247
	Pressure Waves	247
	The Motions of Vibrating Air Molecules Are Governed by Simple Forces	247
	The Motions of Vibrating Air Molecules Change the Local Densities of Air	250
	Pressure Waves, Not Individual Molecules, Propagate Through Space and Vary as a	250
	Function of Both Space and Time	
	The Variation of a Pressure Wave in Time and Space Can Be Measured	251
	Temporal Measures	251
	Spatial Measures	254
	Wavelength and Direction of Sound	255
	Pressure Waves: A Summary and Introduction to Sinusoids	255
	Sinusoidal Motion	256
	Sinusoidal Motion (Simple Harmonic Motion) Is Derived from the Linear Projection of	256
	Uniform Circular Speed	257
	When the Linear Projection of Uniform Circular Speed Is Stretched Out in Time, the Result Is a Sine Wave	257
		258
	Sinusoidal Motion Can Be Described by a Simple Formula and Has Three Important Characteristics: Frequency, Amplitude, and Phase	238
	Sinusoidal Motion: A Summary	259
	Complex Acoustic Events	259
	Complex Periodic Events Have Waveforms That Repeat Their Patterns Over Time and	259
	Are Composed of Harmonically Related Frequency Components	207
	A Complex Periodic Waveform Can Be Considered as the Sum of the Individual	261
	Sinusoids at the Harmonic Frequencies	
	Complex Aperiodic Events Have Waveforms in Which No Repetitive Pattern Can Be	264
	Discerned, and Frequency Components That Are Not Harmonically Related	
	Complex Acoustic Events: A Summary	264
	Resonance	266
	Mechanical Resonance	267
	A Spring-Mass Model of Resonance	267
	The Relative Values of Mass (M) and Elasticity (K) Determine the Frequency of Vibration of	268
	the Spring-Mass Model	
	The Effects of Mass and Stiffness (Elasticity) on a Resonant System: A Summary	270
	Acoustic Resonance: Helmholtz Resonators	270
	The Neck of the Helmholtz Resonator Contains a Column, or Plug of Air, That Behaves Like a	270
	Mass When a Force Is Applied to It	
	The Bowl of a Resonator Contains a Volume of Air That Behaves Like a Spring When a Force	271
	Is Applied to It	
	Acoustic Resonance: Tube Resonators	273
	Resonance in Tubes: A Summary	276
	Resonance Curves, Damping, and Bandwidth	277
	Energy Loss (Damping) in Vibratory Systems Can Be Attributed to Four Factors	277

X

	Time- and Frequency-Domain Representations of Damping in Acoustic Vibratory Systems An Extension of the Resonance Curve Concept: The Shaping of a Source by the Acoustic Characteristics of a Resonator	278 280
	Resonance, Damping, Bandwidth, Filters: A Summary	282
	Review	282
	References	283
	Appendix 7–A: The Decibel Scale	284
8	ACOUSTIC THEORY OF VOWEL PRODUCTION	289
	Introduction	289
	What Is the Precise Nature of the Input Signal Generated by the Vibrating Vocal Folds?	290
	The Time Domain	290
	The Frequency Domain	293
	The Periodic Nature of the Waveform	294
	The Shape of the Waveform	295
	The Ratio of Open Time to Closed Time	297
	Nature of the Input Signal: A Summary	297
	Why Should the Vocal Tract Be Conceptualized as a Tube Closed at One End?	297
	The Response of the Vocal Tract to Excitation	298
	How Are the Acoustic Properties of the Vocal Tract Determined?	299
	Area Function of the Vocal Tract	301
	How Does the Vocal Tract Shape the Input Signal? (How Is the Source Spectrum	303
	Combined with the Theoretical Vocal Tract Spectrum to Produce a Vocal Tract Output?)	
	Formant Bandwidths	307
	Acoustic Theory of Vowel Production: A Summary	308
	What Happens to the Resonant Frequencies of the Vocal Tract When the Tube Is	309
	Constricted at a Given Location?	
	The Three-Parameter Model of Stevens and House	314
	Tongue Height	316
	Tongue Advancement	316
	Configuration of the Lips	318
	Importance of the Stevens and House Rules: A Summary	319
	The Connection Between the Stevens and House Rules and Perturbation Theory	320
	Why Are the Stevens and House Rules Important?	322
	Another Take on the Relationship Between Vocal Tract Configuration and Vocal Tract Resonances	323
	Confirmation of the Acoustic Theory of Vowel Production	324
	Analog Experiments	325
	Human Experiments Review	325 326
	References	326
9	THEORY OF CONSONANT ACOUSTICS	329
	Introduction	329
	Why Is the Acoustic Theory of Speech Production Most Accurate and Straightforward	329
	for Vowels?	
	The Acoustics of Coupled (Shunt) Resonators and Their Application to Consonant Acoustics	330
	Nasal Murmurs	330
	Energy Loss in the Nasal Cavities, Antiresonances, and the Relative Amplitude of	334

Nasal Murmurs

	Nasal Murmurs: A Summary	335
	Nasalization	335
	Nasalization: A Summary	338
	The Importance of Understanding Nasalization	338
	Coupled (Shunt) Resonators in the Production of Lateral Sounds	339
	Coupled (Shunt) Resonators in the Production of Obstruent Sounds	339
	What Is the Theory of Fricative Acoustics?	341
	Fluid Flow in Pipes and Source Types	341
	Aeromechanic/Acoustic Effects in Fricatives: A Summary	344
	A Typical Fricative Waveform and Its Aeromechanical Correlates	345
	Mixed Sources in Fricative Production	346
	Shaping of Fricative Sources by Vocal Tract Resonators	346
	Measurement of Fricative Acoustics	349
	Spectral Measurements	349
	Temporal Measurements	350
	The Acoustic Theory of Fricatives: A Summary	351
	What Is the Theory of Stop Acoustics?	351
	Intervals of Stop Consonant Articulation: Aeromechanics and Acoustics	353
	Closure (Silent) Interval	353
	Release (Burst) Interval	354
	Frication and Aspiration Intervals	355
	Voice-Onset Time	356
	Shaping of Stop Sources by Vocal Tract Resonators	356
	The Nature of Stop Sources	357
	The Shaping of Stop Sources	357
	Measurement of Stop Acoustics	358
	Spectral Measurements	359
	Temporal Measurements	359
	Stop Consonants: A Summary	359
	What Is the Theory of Affricate Acoustics?	360
	Acoustic Contrasts Associated with the Voicing Distinction in Obstruents	360
	Review	361
	References	361
10	SPEECH ACOUSTIC MEASUREMENT AND ANALYSIS	363
	Introduction	363
	A Historical Prelude	363
	The Sound Spectrograph: History and Technique	369
	The Original Sound Spectrograph: Summary	372
	Interpretation of Spectrograms: Specific Features	373
	Axes	373
	Glottal Pulses	375
	Formant Frequencies	375
	Silent Intervals and Stop Bursts	376
	Aperiodic Intervals	378
	Segmentation of Spectrograms	379
	Speech Acoustics Is Not All About Segments: Suprasegmentals	382
	Digital Techniques for Speech Analysis	384
	Speech Analysis by Computer: From Recording to Analysis to Output	384
	Sampling Rate	385

xii

	Filters Bits	385 385
	Analysis and Display	386
	Review	388
	References	388
11	ACOUSTIC PHONETICS DATA	391
	Introduction	391
	Vowels	391
	Vowel Acoustics: Dialect and Cross-Language Phonetics	398
	Within-Speaker Variability in Formant Frequencies	401
	Summary of Vowel Formant Frequencies	403
	A Note on Vowel Formant Frequencies Versus Formant Trajectories	404
	Vowel Durations	406
	Intrinsic Vowel Durations	406
	Extrinsic Factors Affecting Vowel Durations	407
	Diphthongs	409
	Diphthongs: Two Connected Vowels or a Unique Phoneme?	410
	Diphthong Duration	412
	Nasals Nasal Murmurs	412 412
	Nasal Murmurs Nasal Place of Articulation	412 415
	Nasalization	413
	Semivowels	418
	Constriction Interval	421
	Formant Transitions	421
	Semivowel Acoustics and Speech Development	423
	Semivowel Acoustics and Speech Development	423
	Fricatives	425
	Sibilants Versus Nonsibilants: Spectral Characteristics	425
	Quantification of Fricative Spectra	426
	Formant Transitions and Fricative Distinctions	431
	Fricative Duration	432
	Laryngeal Devoicing Gesture and Fricative Duration	435
	/h/ Acoustics	436
	Stops	438
	Closure Interval and Burst	439
	Closure Interval Duration	439
	Flap Closures	440
	Closure Duration and Place of Articulation	441
	Stop Voicing: Some Further Considerations	441
	Laryngeal Devoicing Gesture, Stop Closures, and Voice Onset Time	441
	Bursts	445
	Acoustic Invariance for Stop Place of Articulation	446
	Acoustic Invariance and Theories of Speech Perception	449
	Locus Equations	450
	Acoustic Invariance at the Interface of Speech Production and Perception	452
	Affricates	453
	Acoustic Characteristics of Prosody	454
	Phrase-Level F0 Contours	454

	Phrase-Level Intensity Contours	456
	Stress	457
	Rhythm	458
	Review	459
	References	460
12	SPEECH PERCEPTION	467
	Introduction	467
	Early Speech Perception Research and Categorical Perception	467
	The /ba/-/da/-/ga/ Experiment	468
	Categorical Perception: General Considerations	471
	Labeling Versus Discrimination	472
	Categorical Perception: So What?	472
	Speech Perception Is Species Specific	474
	The Motor Theory of Speech Perception: Proofs and Falsifications	474
	Categorical Perception of Stop Place of Articulation Shows the "Match" to Speech Production	474
	Duplex Perception	475
	Acoustic Invariance	479
	The Competition: General Auditory Explanations of Speech Perception	482
	Sufficient Acoustic Invariance	482
	Replication of Speech Perception Effects Using Nonspeech Signals	483
	Animal and Infant Perception of Speech Signals	485
	The Competition: Direct Realism	486
	Vowel Perception	488
	Motor Theory (Original and Revised)	488
	Auditory Theories	488
	Normalization	489
	Direct Realism	490
	A Summary of Speech Perception Theories	490
	Speech Perception and Word Recognition	491
	Speech Intelligibility	493
	"Explanatory" Speech Intelligibility Tests	495
	Scaled Speech Intelligibility	496
	Phonetic Transcription	498
	Why Should Speech-Language Pathologists and Audiologists Care About Speech	499
	Perception?	-04
	Review	501
	References	501
13	ANATOMY AND PHYSIOLOGY OF THE AUDITORY SYSTEM	505
	Introduction	505
	Temporal Bone	505
	Peripheral Anatomy of the Auditory System	507
	Outer Ear (Conductive Mechanism)	508
	Pinna (Auricle)	508
	External Auditory Meatus (External Auditory Canal)	509
	Tympanic Membrane (Eardrum)	511
	Middle Ear (Conductive Mechanism)	512
	Chambers of the Middle Ear	512
	Ossicles and Associated Structures	513

Ligaments of the Middle Ear	515
Muscles of the Middle Ear	516
Auditory (Eustachian) Tube	517
Medial and Lateral Wall Views of the Middle Ear: A Summary	518
Transmission of Sound Energy by the Conductive Mechanism	519
Inner Ear (Sensorineural Mechanism)	521
Vestibular System	522
Semicircular Canals	523
Vestibule: Saccule and Utricle	524
Summary: Vestibular Structures and Mechanisms	524
Cochlea	525
Fluid Motion within the Scalae: A Broad View	527
Hair Cells and Associated Structures	527
Traveling Waves	530
The Traveling Wave Is Transformed to Action Potentials	533
Auditory Nerve and Auditory Pathways (Neural Mechanism)	533
Auditory Nerve and Associated Structures	534
Efferent Auditory System	534
"Tuning" of the Peripheral Frequency Response	535
Ascending Auditory Pathways	536
Acoustic Reflex	538
Review	540
References	541

4	AUDITORY PSYCHOPHYSICS	543
1	Auditory Psychophysics	543
]	Psychophysics of Loudness	543
	Auditory Thresholds	543
	Equal Loudness Contours for Sinusoids	546
	The Psychophysical Function Relating SPL to Scaled Loudness of Sinusoids	546
	Phons	547
	Sones	547
	Loudness of Complex Sounds	550
	The Peripheral Auditory System Is a Series of Bandpass Filters	550
	The Critical Band Concept and the Loudness of Complex Sounds	556
	Sensitivity of the Auditory System to Loudness Change	556
]	Psychophysics of Pitch	558
	Pitch of Sinusoids	559
	Sensitivity of the Auditory System to Pitch Change	561
	Pitch of Complex Acoustic Events	563
	Pitch of Complex Periodic Events	564
	Pitch of Complex Aperiodic Events	565
]	Psychophysics of Timbre	566
]	Psychophysics of Time	566
]	Psychophysics of Sound Localization	568
	Interaural Cues to Sound Location	570
	Auditory Objects and Auditory Scene Analysis	572
]	Review	575
]	References	577

xv

15	NEURAL STRUCTURES AND MECHANISMS FOR SPEECH, LANGUAGE, AND HEARING	579
	Introduction	579
	The Nervous System: An Overview and Concepts	579
	Central Versus Peripheral Nervous System	579
	Autonomic Nervous System	580
	Anatomical Planes and Directions	581
	White and Gray Matter, Tracts and Nuclei, Nerves and Ganglia	584
	Gray Matter and Nuclei	584
	White Matter and Fiber Tracts	585
	Ganglia	585
	Efferent and Afferent	585
	Neurons and Synapses	586
	Lateralization and Specialization of Function	586
	Cerebral Hemispheres and White Matter	589
	Cerebral Hemispheres	589
	Frontal Lobe	590
	Parietal Lobe	593
	Temporal Lobe	594
	Occipital Lobe	596
	Insula	596
	Limbic System (Limbic Lobe)	597
	Cerebral White Matter	597
	Association Tracts	598
	Striatal Tracts	601
	Commissural Tracts	601
	Descending Projection Tracts	602
	Ascending Projection Tracts	606
	Subcortical Nuclei and Cerebellum	607
	Basal Ganglia	607
	Cortico-Striatal-Cortical Loop	610
	Role of Basal Ganglia	611
	Thalamus	612
	Cerebellum	612
	Cortico-Cerebellar-Cortical Loop	613
	Role of Cerebellum	613
	Cerebellum and Basal Ganglia: New Concepts	614
	Brainstem and Cranial Nerves	615
	Surface Features of the Brainstem: Ventral View	615
	Ventral Surface of Midbrain	616
	Ventral Surface of Pons	617
	Ventral Surface of Medulla	617
	Surface Features of the Brainstem: Dorsal View	617
	Dorsal Surface of Midbrain	617
	Dorsal Surface of Pons	619
	Dorsal Surface of Medulla	619
	Cranial Nerves and Associated Brainstem Nuclei	619
	Cranial Nerve I (Olfactory)	622
	Cranial Nerve II (Optic)	622

Cranial Nerve III (Oculomotor)	622
Cranial Nerve IV (Trochlear)	622
Cranial Nerve V (Trigeminal)	623
Cranial Nerve VI (Abducens)	624
Cranial Nerve VII (Facial)	625
Cranial Nerve VIII (Auditory-Vestibular Nerve)	626
Cranial Nerve IX (Glossopharyngeal)	627
Cranial Nerve X (Vagus)	628
Cranial Nerve XI (Spinal Accessory Nerve)	629
Cranial Nerve XII (Hypoglossal)	629
Cortical Innervation Patterns	630
Why Innervation Patterns Matter	631
The Cranial Nerve Exam and Speech Production	633
Spinal Cord and Spinal Nerves	633
Spinal Cord	633
Spinal Nerves	635
Nervous System Cells	636
Glial Cells	636
Neurons	636
Cell Body (Soma)	637
Axon and Terminal Button	639
Synapses	639
Resting Potential, Action Potential, and Neurotransmitters	640
Resting Potential	640
Action Potential	642
Synaptic Transmission and Neurotransmitters	644
Neuromuscular Junction	645
Meninges, Ventricles, Blood Supply	647
Meninges	647
Dura Mater	648
Arachnoid Mater	649
Pia Mater	649
Meninges and Clinically Relevant Spaces	650
Ventricles	650
Lateral Ventricles	651
Third Ventricle	651
Cerebral Aqueduct, Fourth Ventricle, and Other Passageways for CSF	652
Production, Composition, and Circulation of CSF	652
Blood Supply of Brain	652
Anterior Circulation	652
Posterior Circulation	654
Circle of Willis	654
MCA and Blood Supply to the Dominant Hemisphere	655
Blood–Brain Barrier	658
Speech and Language Functions of the Brain: Possible Sites and Mechanisms	659
Network View of Brain Function	659
DIVA	659
DIVA: Speech Sound Map (lvPMC)	661
DIVA: Articulatory Velocity/Position Maps (PMC)	662

xvii

DIVA: Where Is Aphasia, Where Are Dysarthria Types? Review References 16 SWALLOWING Introduction Anatomy Breathing, Laryngeal, Velopharyngeal-Nasal, and Pharyngeal-Oral Structures Esophagus Stomach Forces and Movements of Swallowing Oral Preparatory Phase Oral Transport Phase Oral Transport Phase Pharyngeal Phase Esophageal Phase Esophageal Phase Breathing and Swallowing Neural Control of Swallowing Role of the Central Nervous System Role of the Central Nervous System Variables That Influence Svallowing Bolus Characteristics Consistency and Texture Volume Taste Swallowing Mode Single Versus Sequential Stuallows Cued Versus Uncued Stuallows Cued Versus Uncued Stuallows Body Position Development Aging Sex Measurement and Analysis of Swallowing Videofluoroscopy Endoscopy Manometry Surface Electromyography Ultrasonography Ultrasonography Aeromechanical Observations	663
References 16 SWALLOWING Introduction Anatomy Breathing, Laryngeal, Velopharyngeal-Nasal, and Pharyngeal-Oral Structures Esophagus Stomach Forces and Movements of Swallowing Oral Preparatory Phase Oral Transport Phase Oral Transport Phase Pharyngeal Phase Esophageal Phase Esophageal Phase Breathing and Swallowing Neural Control of Swallowing Neural Control of Swallowing Role of the Peripheral Nervous System Role of the Central Nervous System Role of the Central Nervous System Variables That Influence Swallowing Bolus Characteristics Consistency and Texture Volume Taste Swallowing Mode Single Versus Sequential Swallows Cued Versus Sequential Swallows Cued Versus Sequential Swallows Cued Versus Uncued Swallows Body Position Development Aging Sex Measurement and Analysis of Swallowing Muanometry Surface Electromyography Ultrasonography	664
 16 SWALLOWING Introduction Anatomy Breathing, Laryngeal, Velopharyngeal-Nasal, and Pharyngeal-Oral Structures Esophagus Stomach Forces and Movements of Swallowing Oral Preparatory Phase Oral Transport Phase Bsophageal Phase Esophageal Phase Overlap of Phases Breathing and Swallowing Neural Control of Swallowing Neural Control of Swallowing Role of the Peripheral Nervous System Role of the Central Nervous System Role of the Central Nervous System Bolus Characteristics Consistency and Texture Volume Taste Swallowing Mode Single Versus Sequential Swallows Rody Position Development Aging Sex Measurement and Analysis of Swallowing Nideofluoroscopy Endoscopy Manometry Surface Electromyography Ultrasonography 	665
Introduction Anatomy Breathing, Laryngeal, Velopharyngeal-Nasal, and Pharyngeal-Oral Structures Esophagus Stomach Forces and Movements of Swallowing Oral Preparatory Phase Oral Transport Phase Pharyngeal Phase Esophageal Phase Esophageal Phase Breathing and Swallowing Neural Control of Swallowing Neural Control of Swallowing Role of the Peripheral Nervous System Role of the Central Nervous System Variables That Influence Swallowing Bolus Characteristics Consistency and Texture Volume Taste Swallowing Mode Single Versus Sequential Swallows Cued Versus Uncued Swallows Body Position Development Aging Sex Measurement and Analysis of Swallowing Videofluoroscopy Endoscopy Manometry Surface Electromyography Ultrasonography	666
Anatomy Breathing, Laryngeal, Velopharyngeal-Nasal, and Pharyngeal-Oral Structures Esophagus Stomach Forces and Movements of Swallowing Oral Preparatory Phase Oral Transport Phase Pharyngeal Phase Esophageal Phase Overlap of Phases Breathing and Swallowing Neural Control of Swallowing Role of the Peripheral Nervous System Role of the Central Nervous System Roles Uncue Swallowing Bolus Characteristics Consistency and Texture Volume Taste Swallowing Mode Single Versus Sequential Swallows Cued Versus Uncued Swallows Body Position Development Aging Sex Measureent and Analysis	669
Breathing, Laryngeal, Velopharyngeal-Nasal, and Pharyngeal-Oral Structures Esophagus Stomach Forces and Movements of Swallowing Oral Preparatory Phase Oral Transport Phase Pharyngeal Phase Esophageal Phase Overlap of Phases Breathing and Swallowing Neural Control of Swallowing Role of the Peripheral Nervous System Role of the Central Nervous System Variables That Influence Swallowing Bolus Characteristics <i>Consistency and Texture</i> Volume Taste Swallowing Mode <i>Single Versus Sequential Swallows</i> <i>Cued Versus Uncued Swallows</i> Body Position Development Aging Sex Measurement and Analysis of Swallowing Videofluoroscopy Endoscopy Manometry Surface Electromyography Ultrasonography	669
Esophagus Stomach Forces and Movements of Swallowing Oral Preparatory Phase Oral Transport Phase Pharyngeal Phase Esophageal Phase Esophageal Phases Breathing and Swallowing Neural Control of Swallowing Neural Control of Swallowing Role of the Peripheral Nervous System Role of the Central Nervous System Variables That Influence Swallowing Bolus Characteristics Consistency and Texture Volume Taste Swallowing Mode Single Versus Sequential Svallows Cued Versus Uncued Swallows Body Position Development Aging Sex Measurement and Analysis of Swallowing Videofluoroscopy Endoscopy Manometry Surface Electromyography Ultrasonography	670
Stomach Forces and Movements of Swallowing Oral Preparatory Phase Oral Transport Phase Pharyngeal Phase Esophageal Phase Overlap of Phases Breathing and Swallowing Role of the Peripheral Nervous System Role of the Central Nervous System Role of the Central Nervous System Variables That Influence Swallowing Bolus Characteristics Consistency and Texture Volume Taste Swallowing Mode Single Versus Sequential Swallows Cued Versus Uncued Swallows Body Position Development Aging Sex Measurement and Analysis of Swallowing Videofluoroscopy Endoscopy Manometry Surface Electromyography Ultrasonography	670
Forces and Movements of Swallowing Oral Preparatory Phase Oral Transport Phase Pharyngeal Phase Esophageal Phase Overlap of Phases Breathing and Swallowing Neural Control of Swallowing Role of the Peripheral Nervous System Role of the Central Nervous System Role of the Central Nervous System Variables That Influence Swallowing Bolus Characteristics Consistency and Texture Volume Taste Swallowing Mode Single Versus Sequential Swallows Cued Versus Sequential Swallows Cued Versus Sequential Swallows Body Position Development Aging Sex Measurement and Analysis of Swallowing Videofluoroscopy Endoscopy Endoscopy Manometry Surface Electromyography Ultrasonography	671
Oral Preparatory Phase Oral Transport Phase Pharyngeal Phase Esophageal Phase Overlap of Phases Breathing and Swallowing Neural Control of Swallowing Role of the Peripheral Nervous System Role of the Central Nervous System Variables That Influence Swallowing Bolus Characteristics <i>Consistency and Texture</i> <i>Volume</i> Taste Swallowing Mode <i>Single Versus Sequential Swallows</i> <i>Cued Versus Sequential Swallows</i> <i>Cued Versus Sequential Swallows</i> Body Position Development Aging Sex Measurement and Analysis of Swallowing Videofluoroscopy Endoscopy Manometry Surface Electromyography Ultrasonography	671
Oral Transport Phase Pharyngeal Phase Esophageal Phase Overlap of Phases Breathing and Swallowing Neural Control of Swallowing Role of the Peripheral Nervous System Role of the Central Nervous System Variables That Influence Swallowing Bolus Characteristics <i>Consistency and Texture</i> <i>Volume</i> <i>Taste</i> Swallowing Mode <i>Single Versus Sequential Swallows</i> <i>Cued Versus Sequential Swallows</i> Body Position Development Aging Sex Measurement and Analysis of Swallowing Videofluoroscopy Endoscopy Manometry Surface Electromyography Ultrasonography	673
Pharyngeal Phase Esophageal Phase Overlap of Phases Breathing and Swallowing Neural Control of Swallowing Role of the Peripheral Nervous System Role of the Central Nervous System Variables That Influence Swallowing Bolus Characteristics <i>Consistency and Texture</i> Volume Taste Swallowing Mode <i>Single Versus Sequential Swallows</i> <i>Cued Versus Sequential Swallows</i> <i>Cued Versus Uncued Swallows</i> Body Position Development Aging Sex Measurement and Analysis of Swallowing Videofluoroscopy Endoscopy Manometry Surface Electromyography Ultrasonography	674
Esophageal Phase Overlap of Phases Breathing and Swallowing Neural Control of Swallowing Role of the Peripheral Nervous System Role of the Central Nervous System Variables That Influence Swallowing Bolus Characteristics Consistency and Texture Volume Taste Swallowing Mode Single Versus Sequential Swallows Cued Versus Sequential Swallows Body Position Development Aging Sex Measurement and Analysis of Swallowing Videofluoroscopy Endoscopy Endoscopy Manometry Surface Electromyography Ultrasonography	676
Overlap of Phases Breathing and Swallowing Neural Control of Swallowing Role of the Peripheral Nervous System Role of the Central Nervous System Variables That Influence Swallowing Bolus Characteristics Consistency and Texture Volume Taste Swallowing Mode Single Versus Sequential Swallows Cued Versus Uncued Swallows Body Position Development Aging Sex Measurement and Analysis of Swallowing Videofluoroscopy Endoscopy Manometry Surface Electromyography Ultrasonography	676
Breathing and Swallowing Neural Control of Swallowing Role of the Peripheral Nervous System Role of the Central Nervous System Variables That Influence Swallowing Bolus Characteristics Consistency and Texture Volume Taste Swallowing Mode Single Versus Sequential Swallows Cued Versus Uncued Swallows Body Position Development Aging Sex Measurement and Analysis of Swallowing Videofluoroscopy Endoscopy Manometry Surface Electromyography Ultrasonography	677
Neural Control of Swallowing Role of the Peripheral Nervous System Role of the Central Nervous System Variables That Influence Swallowing Bolus Characteristics Consistency and Texture Volume Taste Swallowing Mode Single Versus Sequential Swallows Cued Versus Uncued Swallows Body Position Development Aging Sex Measurement and Analysis of Swallowing Videofluoroscopy Endoscopy Manometry Surface Electromyography Ultrasonography	678
Role of the Peripheral Nervous System Role of the Central Nervous System Variables That Influence Swallowing Bolus Characteristics Consistency and Texture Volume Taste Swallowing Mode Single Versus Sequential Swallows Cued Versus Uncued Swallows Body Position Development Aging Sex Measurement and Analysis of Swallowing Videofluoroscopy Endoscopy Manometry Surface Electromyography Ultrasonography	678
Role of the Central Nervous System Variables That Influence Swallowing Bolus Characteristics Consistency and Texture Volume Taste Swallowing Mode Single Versus Sequential Swallows Cued Versus Uncued Swallows Body Position Development Aging Sex Measurement and Analysis of Swallowing Videofluoroscopy Endoscopy Manometry Surface Electromyography Ultrasonography	681
Variables That Influence Swallowing Bolus Characteristics Consistency and Texture Volume Taste Swallowing Mode Single Versus Sequential Swallows Cued Versus Uncued Swallows Body Position Development Aging Sex Measurement and Analysis of Swallowing Videofluoroscopy Endoscopy Manometry Surface Electromyography Ultrasonography	681
Bolus Characteristics Consistency and Texture Volume Taste Swallowing Mode Single Versus Sequential Swallows Cued Versus Uncued Swallows Body Position Development Aging Sex Measurement and Analysis of Swallowing Videofluoroscopy Endoscopy Manometry Surface Electromyography Ultrasonography	682
Consistency and Texture Volume Taste Swallowing Mode Single Versus Sequential Swallows Cued Versus Uncued Swallows Body Position Development Aging Sex Measurement and Analysis of Swallowing Videofluoroscopy Endoscopy Endoscopy Manometry Surface Electromyography Ultrasonography	683
Volume Taste Swallowing Mode Single Versus Sequential Swallows Cued Versus Uncued Swallows Body Position Development Aging Sex Measurement and Analysis of Swallowing Videofluoroscopy Endoscopy Endoscopy Manometry Surface Electromyography Ultrasonography	683
TasteSwallowing ModeSingle Versus Sequential SwallowsCued Versus Uncued SwallowsBody PositionDevelopmentAgingSexMeasurement and Analysis of SwallowingVideofluoroscopyEndoscopyEndoscopySurface ElectromyographyUltrasonography	683
Swallowing Mode Single Versus Sequential Swallows Cued Versus Uncued Swallows Body Position Development Aging Sex Measurement and Analysis of Swallowing Videofluoroscopy Endoscopy Manometry Surface Electromyography Ultrasonography	683
Single Versus Sequential Swallows Cued Versus Uncued Swallows Body Position Development Aging Sex Measurement and Analysis of Swallowing Videofluoroscopy Endoscopy Manometry Surface Electromyography Ultrasonography	684
Cued Versus Uncued Swallows Body Position Development Aging Sex Measurement and Analysis of Swallowing Videofluoroscopy Endoscopy Manometry Surface Electromyography Ultrasonography	684
Body Position Development Aging Sex Measurement and Analysis of Swallowing Videofluoroscopy Endoscopy Manometry Surface Electromyography Ultrasonography	684
Development Aging Sex Measurement and Analysis of Swallowing Videofluoroscopy Endoscopy Manometry Surface Electromyography Ultrasonography	685
Aging Sex Measurement and Analysis of Swallowing Videofluoroscopy Endoscopy Manometry Surface Electromyography Ultrasonography	686
Sex Measurement and Analysis of Swallowing Videofluoroscopy Endoscopy Manometry Surface Electromyography Ultrasonography	686
Measurement and Analysis of Swallowing Videofluoroscopy Endoscopy Manometry Surface Electromyography Ultrasonography	687
Videofluoroscopy Endoscopy Manometry Surface Electromyography Ultrasonography	688
Endoscopy Manometry Surface Electromyography Ultrasonography	688
Manometry Surface Electromyography Ultrasonography	688
Surface Electromyography Ultrasonography	689
Ultrasonography	690
01,	692
Aeromechanical Observations	692
	692
Client Self-Report	694
Health Care Professionals	694
Review	695
References	697

NAME INDEX	703
SUBJECT INDEX	715

Preface

The third edition of *Preclinical Speech Science* is a carefully revised and expanded version of the second edition of the textbook. The revised parts include lineby-line edits of all chapters from the second edition for greater clarity, removal of certain sections (several of which are available as supplementary materials on the textbook companion website, including the scenarios of the previous edition), and addition of new material to chapters from the second edition, including text, figures, and recent references from the research literature.

This new edition also contains three new chapters, including Chapter 6 ("Speech Physiology Measurement and Analysis"), Chapter 13 ("Auditory Anatomy and Physiology"), and Chapter 14 ("Auditory Psychophysics"). Chapter 6 was added to complement Chapter 10 ("Speech Acoustic Measurement and Analysis") and Chapters 13 and 14 were added in response to suggestions made by colleagues and students, that this textbook would benefit from chapter-length material on Hearing Science. With the inclusion of these two chapters on hearing science, perhaps a more accurate title for the textbook would be *Preclinical Speech and Hearing Science*. Because this is the third edition of the text, we have chosen to retain the original title to be consistent with the previous editions.

The Workbook accompanying the third edition of this textbook has also been updated with complete sets of problems and exercises for the three new chapters, and revised exercises for all other chapters. The Workbook is a self-study resource, complete with answers to the problems and exercises.

A PluralPlus companion website also accompanies this new edition of *Preclinical Speech Science*. The website has supplementary text and figures, sound files, study guides, and instructor lecture slides.

Acknowledgments

The formulation, writing, and production of this textbook has benefited from the talents, advice, and generosity of many people. First and foremost, we acknowledge and thank Maury Aaseng, the talented, kind, and wise creator of the beautiful images that are such an integral part of the text. Maury is our friend and colleague of these past dozen years, and hopefully of many years to come.

We acknowledge the following people, for reading and commenting on parts of the text, for discussions concerning presentation of material in the text and pointing us to relevant papers in the literature, for generosity in allowing us to use their outstanding figures in this book, and for funding significant time devoted to the preparation of the text. Thank you: Kate Bunton, Michelle Ciucci, Jim Hillenbrand, Corinne Jones, Joel Kahane, David Kuehn, Rosemary Lester-Smith, Bob Lutfi, Tim McCulloch, The Oros family, Robin Samlan, and Brad Story.

Finally, we thank the staff of Plural Publishing, especially Valerie Johns, Kalie Koscielak, and Linda Shapiro, for their invaluable assistance and, most of all, their patience.

GW & JH

Reviewers

Plural Publishing, Inc. and the authors would like to thank the following reviewers for taking the time to provide their valuable feedback during the development process:

Andrew Stuart, PhD, CCC-A, Aud(C)

Professor Department of Communication Sciences and Disorders East Carolina University Greenville, North Carolina

Rosalie M. Uchanski, PhD

Assistant Professor Program in Audiology and Communication Sciences Washington University in St. Louis St. Louis, Missouri

Deborah R. Welling, AuD, CCC/A, FAAA

Associate Professor Department of Speech-Language Pathology Seton Hall University South Orange, New Jersey

For Nevi, Solly, and Isla: Love thinking, reading, and knowing You'll learn just what you don't know. Know this way you are growing By knowing what you don't know.

And for Tom, Pauline and Sadanand. You know why.

Introduction

Welcome to *Preclinical Speech Science: Anatomy, Physiology, Acoustics, and Perception, Third Edition.* Two preliminaries are offered here. One is a discussion of the focus of the book, the other a discussion of the domains of preclinical speech science and preclinical hearing science.

FOCUS OF THE BOOK

Preclinical Speech Science: Anatomy, Physiology, Acoustics, and Perception is designed as an introduction to the fundamentals of speech and hearing science that are important to aspiring and practicing clinicians. The text is suitable for courses that cover the anatomy and physiology of speech production and swallowing, the anatomy and physiology of the hearing mechanism and auditory psychophysics, the acoustics and perception of speech, and general neuroanatomy and neurophysiology and its relevance for speech and hearing. It also includes sidetracks of clinical and historical interest, considerations of the scientific bases of clinical protocols and methodologies, and discussions of clinical personnel involved in the evaluation and management of disorders of speaking, hearing, and swallowing. This book provides up-to-date coverage of the science of speech and hearing, is user friendly to beginning students, yet integrative and translational for graduate students and practicing speech-language pathologists and audiologists. It is an outgrowth of the three authors' many years of teaching experience with several thousand undergraduate and graduate students.

The illustrations, done by the extremely talented artist Maury Aaseng, are a key feature of this book. These original illustrations, largely in full color, are supplemented by a small number of illustrations from other sources. The original illustrations were carefully chosen and drafted to convey only salient features, an approach in line with the written text.

DOMAIN OF PRECLINICAL SPEECH SCIENCE

The domain of preclinical speech science is portrayed in Figure 1–1. This domain encompasses speech production, speech acoustics, speech perception, and swallowing. Within this domain, consideration is given to levels of observation, subsystems of speech production and swallowing, and applications of data.

Levels of Observation

Speech production and swallowing are processes. They result in acoustic products (more so for speech

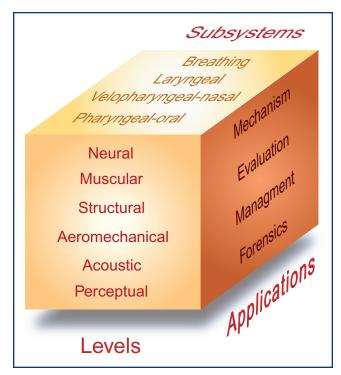


Figure 1-1. Domain of preclinical speech science.

than swallowing) and perceptual experiences. These processes, products, and experiences involve different levels of observation. Six such levels are represented in Figure 1–1: (a) neural, (b) muscular, (c) structural, (d) aeromechanical, (e) acoustic, and (f) perceptual. These levels of observation are not completely separate entities but have important interactions. These interactions are not shown in the figure but are discussed in subsequent chapters.

The neural level of observation encompasses nervous system events during speech production and swallowing. These include all events that qualify as motor planning and execution and all forms of afferent and sensory information that influence the ongoing control of speech production and swallowing. The neural level of observation pertains to the parts of the brain, spinal cord, and cranial and spinal nerves important to speech production and swallowing and to all underlying neural mechanisms, some voluntary and some automatic, some that involve awareness, and some that do not. Neural data are often derived from physical or metabolic imaging methods that reflect patterns of activation of different regions of the brain. Activation at the neural level can also be inferred from events associated with other (downstream) levels of observation.

The muscular level of observation is concerned with the influence of muscle forces on speech production and swallowing. Muscle forces are responsible for powering these two processes. Muscles are effectors that respond to control signals from the nervous system. The muscular events of speech production and swallowing are manifested in mechanical pulls and are often indexed at the periphery through the electrical activities associated with muscle contractions. Inferences about muscle activities are also made from measurements of the forces or movements generated by different parts of the speech production apparatus and swallowing apparatus. Nevertheless, there are ambiguities introduced when attempting to infer individual muscle activities from forces or movements because forces and movements are usually accomplished by groups of muscles working together. Such inferences, if they can be made at all, require a detailed knowledge of anatomy and physiology.

The structural level of observation deals with anatomical structures and movements of the speech production apparatus and swallowing apparatus. This level of observation is concerned not only with the many muscular and non-muscular structures that make up the speech apparatus, including bone, muscle, ligaments, and membranes, but also with the displacements, velocities, and accelerations/decelerations of structures and how they are timed in relation to the movements of other structures. Certain structural observations can be made with the naked eye, whereas others are hidden from view or are too rapid to be followed with the naked eye and require the use of instrumental monitoring. To the person on the street, the structural level of observation is public evidence of speech production and swallowing. Speech reading (lip reading) has its roots at this level of observation.

The structural movements of speech production and swallowing give rise to an aeromechanical level of observation. It is at this level that air comes into play. Movements of structures impart energy to the air by compressing and decompressing it and causing it to flow from one region to another. The raw airstream generated in association with the aeromechanical level is modified by structures of the speech production apparatus and swallowing apparatus that lie along various passageways. The products of the aeromechanical level are complex, rapid, and nearly continuous changes in air pressures, airflows, and air volumes. These products are usually "invisible," especially for swallowing. However, those who speak and smoke at the same time or who speak in subfreezing temperatures often provide the observer with the opportunity to visualize certain aeromechanical events.

The acoustic level of observation is fully within the public domain. Although certain aspects of swallowing may be accompanied by sounds, primacy at this level pertains to the generation of speech sounds. The raw material of the acoustic level is the sonorous, buzzlike, hisslike, and poplike sounds that result from the speaker's valving of the airstream in different ways and at different locations within the speech production apparatus. This raw material is filtered and conditioned by its passage through the apparatus and radiates from the mouth or nose, or both, in the form of very fast and nearly continuous air pressure changes experienced as sound waves. These sound waves propagate from the speaker's mouth and can be coded in terms of frequency, sound pressure level, and time and are what constitute speech, the acoustic representation of spoken language. The acoustic level is important in face-to-face communication and in the use of telephones, radios, televisions, hearing aids and cochlear implants, and various forms of recording. It is this level that makes it possible to communicate effectively around corners, through obstacles, in the dark, and over long distances.

The perceptual level of observation has somewhat different manifestations for speech and swallowing. For speech, auditory analysis of the speech (acoustic) signal allows the listener to recognize phonetic cues that are consistent with the listener's knowledge of the sound system of a language. The speaker is also a

3

perceiver of her own speech acoustic signal, using it to check that the signal she intended is the one she produced. Visual information is another source of information for the perception of speech. Listeners, even those with normal hearing, are known to combine acoustic and visual information for the most effective perception of speech. In contrast, swallowing relies less on auditory and visual information, but is highly dependent on the more subconscious experiences of kinesthesia and proprioception (awareness of position and movement characteristics of body structures, such as the tongue and jaw). Swallowing is also guided by touch and pressure sensations (as in awareness of contact of the tongue with the hard palate), which originate in sensory receptors embedded in the skin and muscles. Taste, which is detected by specialized taste receptors on the tongue and other oral structures, and consistency of food, which is detected by tactile receptors in the pharyngeal-oral component of the speech apparatus, can also serve as perceptual information for swallowing. Of course, cognitive processes contribute to the perceptual level of observation for both speech and swallowing. Cognitive processes in speaking, swallowing and hearing are not treated in detail in this text.

Subsystems of Speech Production and Swallowing

The activities of speech production and swallowing share many of the same structural and functional components. These components can be divided, somewhat arbitrarily, into subsystems. Speech production subsystems may differ when chosen by a linguist versus a speech scientist versus a speech-language pathologist; and swallowing subsystems may differ when chosen by a swallowing scientist versus a gastroenterologist versus a speech-language pathologist. For the purposes of this book, four subsystems are used for speech production and swallowing. As illustrated in Figure 1–1, these include the (a) breathing apparatus, (b) laryngeal apparatus, (c) velopharyngeal-nasal apparatus, and (d) pharyngeal-oral apparatus. The functional significance of each of the four subsystems differs between speech production and swallowing, but each subsystem is critically important to its respective behaviors and each manifests clinical signs that can reveal abnormality.

The breathing apparatus is defined in the present context to include structures below the larynx within the neck and torso. These are, most importantly, the pulmonary apparatus (pulmonary airways and lungs) and chest wall apparatus (rib cage wall, diaphragm, abdominal wall, and abdominal content). During speech production, the breathing apparatus provides the necessary driving forces while simultaneously serving the functions of ventilation and gas exchange. During swallowing, the breathing apparatus engages in a period of apnea (breath holding) to protect the pulmonary airways and lungs from the intrusion of unwanted substances (food and liquid). The breathing apparatus is the largest of the subsystems and its role in speech production and swallowing is fundamentally important.

The laryngeal apparatus lies between the trachea (windpipe) and the pharynx (throat) and adjusts the coupling between the two. At times, the laryngeal airway is open to allow air to move in and out of the breathing apparatus, whereas at times it is adjusted to obstruct or constrict the airway. Very rapid to and fro movements of the vocal folds within the larynx create voiced sounds and give the laryngeal apparatus its colloquial label "voice box." The larynx can also produce noisy sounds, like whisper. During swallowing, the laryngeal apparatus is active in closing the laryngeal airway to protect the pulmonary airways. Food and liquid are then able to pass over and around the larynx and into the esophagus on their way to the stomach.

The velopharyngeal-nasal apparatus consists of the upper pharynx, velum, nasal cavities, and outer nose. It is important to include the nasal portion of this subsystem because it can have a significant influence on the aeromechanical and acoustic levels of the speech production process. When breathing through the nose, the velopharyngeal-nasal airway is open. When speaking, the size of the velopharyngeal port varies, depending on the nature of the speech produced. For example, consonant sounds that require high oral air pressure are typically associated with airtight closure of the velopharyngeal port, whereas nasal consonants are produced with an open velopharyngeal port. Function of the velopharyngeal-nasal apparatus during swallowing is concerned mainly with keeping the velopharynx sealed airtight. This prevents the passage of food and liquid into the nasal cavities while substances are moved backward and downward through the oropharynx.

The pharyngeal-oral apparatus comprises the middle and lower pharynx, oral cavity, and oral vestibule. During running speech production, the apparatus is typically open during inspiration and makes different adjustments for consonant and vowel productions during expiration, including the generation of transient, voiceless, and voiced sounds and the filtering of those sounds. During swallowing, the pharyngeal-oral apparatus prepares food and liquid and propels it to the esophagus.

Applications of Data

There are many applications of data obtained about speech production and swallowing. These applications depend on who selects and defines the data and what the goals are for collecting and analyzing them. Figure 1–1 shows four important applications of data: (a) understanding mechanism, (b) evaluation, (c) management, and (d) forensics.

One application of data is the understanding of mechanism. This use provides the foundational bases for knowing how speech is produced and how swallowing is performed. Such foundational bases are important for their heuristic value in elucidating fundamental processes and principles and for differentiating normal from abnormal.

Another application of data is their use in evaluation. This use is usually practical in nature and involves quantitative determinations of the status and functional capabilities of an individual's speech production, speech, and swallowing. Evaluation first enables a determination as to whether or not abnormality exists. If abnormality does exist, then appropriate evaluation may contribute to: (a) making a diagnosis, (b) developing a rational, effective, and efficient management plan, (c) monitoring progress during the course of management, and (d) providing a reasonable prognosis as to the extent and speed of improvement to be expected. For example, a specific use of subsystems analysis in the evaluation of speech production is the determination of how individual subsystems contribute to deficits in speech intelligibility. Two individuals may have equivalent intelligibility problems as determined by formal tests but have different subsystems "explanations" for their deficits. The careful evaluation of subsystems performance can point to which parts of the speech production apparatus may be most responsible for speech intelligibility deficits and how those parts should be addressed in management. The subsystems approach to evaluation cannot be applied effectively without solid knowledge of normal structures and functions, as described in this text.

A third application of data is management. Different management strategies may be based on any of the six levels of observation and include any of the four subsystems of speech production and swallowing. Strategies may include adjusting individual variables or combinations of variables, staging the order of different interventions, and providing feedback about speech production and swallowing processes, products, and experiences. Management data provide information about outcomes and whether or not interventions are effective, efficient, and long lasting. Management data can also be used to compare and contrast different interventions to arrive at optimal choices.

The remaining application of data is their use in forensics. This application is concerned with scientific facts and expert opinion as they relate to legal issues. The speech scientist and speech-language pathologist are sometimes called on to give legal depositions or to testify in courts of law in a variety of forensic contexts. Forensic uses of data may include issues pertaining to speaker identification, speaker status under the influence of drugs or alcohol, and speaker intent at deceit, among others. Forensic uses of data may also relate to personal injury claims or malpractice claims. These may involve speech production, speech, or swallowing alone, or in different combinations, and may include adversarial depositions and testimonies of other experts. Under such circumstances, the status and capabilities of the individuals claiming personal injury or malpractice may be considered from the perspective of underlying mechanism, evaluation, and management.

DOMAIN OF PRECLINICAL HEARING SCIENCE

The domain of preclinical hearing science is portrayed in Figure 1–2. This domain encompasses audition, which serves the purpose of hearing and recognizing environmental sounds, music, speech acoustic signals, and electronically transmitted signals (as in the case of hearing aids and cochlear implants). Like the domain of preclinical speech science, consideration is given to levels of observation, subsystems, and applications of data.

Levels of Observation

Figure 1–2 shows levels of observation for audition. They include: (a) acoustic (pressure waves), (b) aeromechanical, (c) structural, (d) muscular, (e) mechanosensory, and (f) neural. This is consistent with the idea of speech production as the output and audition as the input of the speech communication process.¹

¹It is recognized that other forms of communication can be conceptualized in terms of output-input levels and processes. This includes sign language (gesture as output, vision as input), communication devices (e.g., language boards as output, vision as input), and speech synthesizers (synthesized speech as output, audition as input). Other examples can be imagined. This textbook does not cover these forms of communication in detail.

5

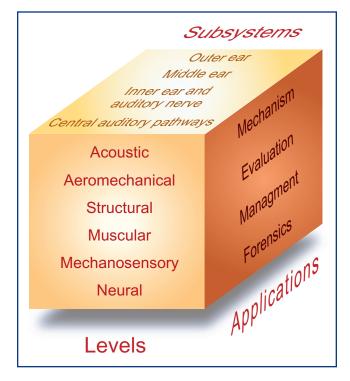


Figure 1-2. Domain of preclinical hearing science.

The acoustic level refers to the frequencies, amplitudes, and temporal characteristics of pressure waves that enter the ear at its opening to the atmosphere. As in the case of the acoustic level of speech production, the acoustic level is public. The signal can be analyzed by sophisticated instruments to extract and modify the spectral content and the way in which it varies over time. This level of observation is relevant to establishing the analysis capabilities of the human auditory system, both normal and disordered.

The aeromechanical level is important because the auditory system responds to the acoustic pressure wave (the "aero" part of the term) with mechanical vibrations of auditory structures. These structures include the tympanic membrane (the eardrum) and the ossicles, which are three tiny bones within the middle ear cavity. These mechanical vibrations replicate the vibrations in air that create pressure waves, but only to a point. The differences between auditory analysis of frequency, amplitude, and temporal characteristics and these characteristics in pressure waves reveal the analysis capabilities of the human ear.

The structural level includes the anatomy of the auditory system as well as the physiology of hearing. As in the case of the structural level of speech science, the anatomy of the auditory system is complex and interesting, and well suited to transmitting vibratory energy from the outer ear to the inner ear. Many of these structures are moving components, such as the tympanic membrane, the ossicles, the fluid within the cochlea (inner ear), and within the fluid a special membrane on which the auditory sense organs are located. A peripheral nerve is dedicated to transmission of auditory information from the cochlea to the central nervous system, and within the central nervous system complex pathways carry auditory information from the brainstem to the cortex.

The muscular level of the auditory system is simple compared with the speech production system, but still critical to hearing processes. A few muscles may cause subtle movements of the pinna (the structure attached to the head and most visible as an auditory structure), but in humans this ability has mostly disappeared. Contraction of two muscles in the middle ear, an air-filled cavity behind the tympanic membrane, stiffens the ossicles and tympanic membrane, and in doing so reduces the transmission of sound energy from the air to the cochlea. One of the muscles plays a primary role in a reflex that minimizes the possibility of damage to the cochlea when the auditory system is exposed to extremely intense sounds.

The mechanosensory level refers to the transduction of mechanical energy to neurochemical energy that is observed when fluid displacements within the cochlea (the mechanical part of the level) are transformed into neurochemical energy (the sensory part). This transformation takes place at the hair cells within the cochlea: fluid movements bend the hair cells, which cause the electrical potential of hair cells to change, which in turn releases a neurotransmitter that initiates firing of nerve fibers in the auditory nerve. The hair cells are the sensory receptors of audition, much like rods and cones within the retina are the sensory receptors for vision.

The neural level of audition includes the auditory nerve, a peripheral nerve that emerges from the cochlea and inserts into the brainstem. Inside the brainstem the fibers travel to brainstem nuclei (clusters of neuronal cell bodies), which send fibers to increasingly higher levels of the central nervous system until they reach cell bodies in the cortex. These fibers, called tracts, constitute the central auditory pathways. Fibers within the auditory nerve and nuclei and tracts that compose the auditory pathways have a tonotopic arrangement, meaning specific fibers and cells respond selectively depending on the frequencies of the incoming acoustic stimulus.

Subsystems of the Auditory System

The idea of subsystems is not frequently used to describe audition, but the concept can be easily adapted

for a parallel to the speech production system. As shown in Figure 1–2, the auditory subsystems include: (a) the outer ear, (b) the middle ear, (c) the inner ear and auditory nerve, and (d) the central auditory pathways.

The outer ear includes the pinna (also called the auricle) and the external auditory meatus (the external ear canal). The structures that make up the pinna are variable across humans, and when exposed to sound pressure waves emphasize energy at certain frequencies and de-emphasize energy at other frequencies. The pinna may play a role in the localization of sound sources.

The middle ear is an air-filled cavity. It includes: (a) one surface of the three-layer tympanic membrane (eardrum), the entire membrane vibrating in response to sound energy conducted down the external ear canal, (b) the three connected ossicles (bones) that transmit vibrations of the tympanic membrane to the cochlea (an inner ear structure), (c) the opening of the auditory tube that leads to a closed tube (opened intermittently) in the pharynx, (d) two muscles that contract to stiffen the ossicles and in doing so make the transmission of sound energy from the tympanic membrane to the cochlea less efficient, and (e) segments of several nerves and blood vessels.

The inner ear contains the bony, fluid-filled cochlea, the ganglia, and cranial nerve VIII, which is composed of the auditory and vestibular nerves. Inside the snailshaped cochlea is a membrane containing the sensory organs of hearing. This membrane and its complex structures are displaced by movement of the fluid caused by vibration of the ossicles. The inner ear also contains the vestibule where the sensory apparatus for balance is located. Vestibular structures are similar but not identical to those of the cochlea.

The central auditory pathways include a series of nuclei (the cell bodies of neurons) and fiber tracts that connect these nuclei to other parts of the brain. The pathways are dedicated to the transmission of auditory information from the brainstem to the auditory cortex. Within the cortex, several regions of cells perform increasingly complex analysis of auditory information, including the analysis resulting in the perception of speech.

Like the subsystems of speech production, the auditory subsystems are not independent and can be organized in different ways. For example, a commonly used organization includes three auditory subsystems: (a) the conductive component, (b) the sensorineural component, and (c) the central auditory pathways. The conductive component includes the outer and middle ears, the sensorineural component the cochlea and auditory nerve, and the central component the auditory pathways described above.

Applications of Data

Like speech production, the applications of data on audition serve many purposes. These purposes include: (a) understanding mechanism, (b) evaluation, and (c) management. A forensic application of audition can also be proposed, although it is clearly part of evaluation.

As stated above for speech production, knowledge of the structure and function of the auditory system is required to distinguish normal from abnormal. In addition, the knowledge is basic to the everyday professional life of speech-language pathologists and audiologists. Professionals who evaluate, diagnose, and manage communication disorders must be able to communicate with allied professionals who are not well versed in the structure and function of the auditory system and need coherent explanations of the basis of a hearing deficit. Similarly, clients and their family members are often interested in knowing the underlying science of a hearing disorder. The speech-language pathologist and audiologist who have mastered auditory structure and function can provide this information in a clear and simplified way.

The second application of data about audition is the evaluation of hearing disorders. Often the first phase of evaluation is performed by audiologists who use a variety of tests to determine the magnitude of hearing loss and the probable structure(s) responsible for the loss. Hearing disorders take many forms, which are often correlated with specific auditory subsystems. For example, an audiologist uses a range of pure tones (single-frequency acoustic events) to document the magnitude of hearing loss as a function of frequency. Depending on the pattern of hearing loss across frequencies, follow-up tests are performed to determine if the loss is in the conductive part of the mechanism, the sensorineural part, or a combination of the two. Sometimes a client shows very little hearing loss by these tests but has difficulty understanding speech. This often suggests a problem in the auditory nerve and/ or central auditory pathways, and there are special tests to evaluate this possibility. These tests, and their results, cannot be understood in the absence of detailed knowledge of auditory structure and function.

The third application is management. Management of hearing problems includes the restoration, to the degree possible, of hearing function for those who have suffered hearing loss as children or adults; it also includes the provision of auditory stimulation to those born deaf or deafened by disease or accident. Hearing aids and cochlear implants are the two most common devices used in managing acquired hearing loss in children and adults (or in children who are born with hearing loss but are not deaf), and providing auditory stimulation in children born deaf or older individuals who have lost all hearing. These devices must be programmed with settings that depend on the structure and function of the diseased auditory system. The most effective programming emerges from expert knowledge of how damage to different auditory structures results in different magnitudes and patterns of hearing loss. In addition, the programming must take account of the acoustic properties of speech and how they relate to the ability to understand speech. This is because the primary purpose of any hearing device is to facilitate the understanding of speech.

Finally, an application of forensics in audition is the use of clinical tests that can detect functional hearing skills in persons who claim extensive or complete hearing loss due to accidents, disease, or other factors. This is part of the evaluation component of audition, but the potential legal implications (insurance fraud or compensation from an employer) justifies the use of the "forensic" label for this aspect of auditory evaluation.

REVIEW

Preclinical Speech Science: Anatomy, Physiology, Acoustics, and Perception is intended as an introduction to speech science and hearing science, both of fundamental importance to aspiring clinicians and practicing clinicians.

The text is suitable for different courses that cover anatomy and physiology of speech production and swallowing, hearing science, and the acoustics and perception of speech.

The material in the text is integrative and translational, applicable to both undergraduate and graduate students, and a source of continuing education and reference for practicing speech-language pathologists and audiologists.

The domain of preclinical speech and hearing science encompasses different levels of observation, different subsystems, and different applications of data.

Levels of observation in speech science include the neural, muscular, structural, aeromechanical, acoustic, and perceptual levels.

For hearing science, the levels of observation include the acoustic, structural, aeromechanical, muscular, mechanosensory, and neural.

Subsystems of speech production and swallowing include the breathing apparatus, laryngeal apparatus, velopharyngeal-nasal apparatus, and pharyngeal-oral apparatus.

Subsystems of hearing science include the outer ear, middle ear, inner ear and auditory nerve, and central auditory pathways, although an alternative and clinical set of subsystems includes the conductive, sensorineural, and auditory pathways components of the hearing mechanisms.

Applications of data include the understanding of mechanism, evaluation, management, and forensics.

Sidetracks

Throughout the book you'll find a series of sidetracks. These are short asides that relate to topics being discussed in the main text. Many of the sidetracks in the book are a bit less formal and a bit more lighthearted than the main text they complement. This is intended to enhance your reading enjoyment and to put some fun in your study of the material. We hope you enjoy reading these sidetracks as much as we enjoyed writing them.

7

Breathing and Speech Production

INTRODUCTION

The breathing apparatus moves air into and out of the body for the purpose of sustaining life as well as for performing other important functions such as speaking. It includes an energy source and passive components that couple this source to the air it moves.

This chapter begins with detailed consideration of the anatomical bases of breathing, forces and movements of breathing, control variables of breathing, neural control of breathing, and ventilation and gas exchange during tidal breathing. The latter part of the chapter is dedicated to speech breathing and selected variables that influence it.

ANATOMY OF THE BREATHING APPARATUS

The breathing apparatus is located within the torso (body trunk). A skeleton of bone and cartilage forms the framework for the breathing apparatus. This skeletal framework and the subdivisions of the breathing

Coming to Terms

Terms can either enlighten you or get you into verbal quagmires. Respiratory physiologists have gone out of their way to be precise in their use of terms. They've even held conventions to iron out their differences in language. It's a good idea to take a little extra time and care when reading the early sections of this chapter. Let the lexicon of the respiratory physiologist take firm root. Don't be tempted to skip over parts just because the words in the headings look familiar to you. You may be surprised to find that a term you thought you understood actually has an entirely different meaning to a respiratory physiologist. apparatus are considered here. The muscles of the breathing apparatus are covered under Forces of the Breathing Apparatus.

Skeletal Framework

The skeletal framework of the breathing apparatus is depicted in Figure 2–1. At the back of the torso, 34 irregularly shaped vertebrae (bones) form the vertebral column or backbone. The uppermost 7 of these vertebrae are termed cervical (neck), the next lower 12 are called thoracic (chest), and the next three lower groups of 5 each are referred to as lumbar, sacral, and coccygeal (collectively, abdominal). The vertebral column constitutes a back centerpost for the torso.

The ribs make up most of the upper skeletal framework. They are 12 flat, arch-shaped bones on each side of the body. The ribs slope downward from back to front along the sides of the torso, forming the rib cage and giving roundness to the framework. At the front, most of the ribs attach to bars of costal (rib) cartilage, which, in turn, attach to the sternum or breastbone. The sternum serves as a front centerpost for the rib cage. The typical rib cage includes upper pairs of ribs attached to the sternum by their own costal cartilages, lower pairs that share cartilages, and the lowest two pairs that float without front attachments.

The remainder of the upper skeletal framework is formed by the pectoral girdle (shoulder girdle). This structure is near the top of the rib cage. The front of the pectoral girdle is formed by the two clavicles (collar bones), each of which is a strut extending from the sternum over the first rib toward the side and back of the rib cage. At the back, the clavicles attach to two triangularly shaped plates, the scapulae (shoulder blades). The scapulae cover most of the upper back portion of the rib cage.

Two large, irregularly shaped coxal (hip) bones are located in the lower skeletal framework. These two bones, together with the sacral and coccygeal vertebrae, form the pelvic girdle (bony pelvis). The pelvic